Semi-prime H Numbers (POJ 3292)
This question gives a new defined prime numbers in a specific number space. We can apply methods similar to prime sieve method to find all prime H numbers in range and then find all semi-prime H numbers. Then when a query comes, we use binary search to find the count in time.
import java.io.*;
import java.util.*;
public class SemiPrimeHNumbers {
private static int L = 1000001;
private static int pos(int h) {
return h / 4;
}
private static int[] getSemiPrimes() {
int N = pos(L) + 1;
int[] hs = new int[N];
int count = 0;
for (int i = 5; i <= L; i += 4) {
if (hs[pos(i)] > 0) continue;
count++;
for (int j = i; (i * (long)j) <= L; j += 4) {
hs[pos(i * j)]++;
}
}
int[] primes = new int[count];
int idx = 0;
for (int i = 1; i < hs.length; i++) {
if (hs[i] == 0) {
primes[idx++] = i * 4 + 1;
}
}
HashSet<Integer> pset = new HashSet<Integer>(count);
for (int i = 0; i < count; i++) {
for (int j = 0; j <= i; j++) {
long a = primes[i];
long b = primes[j];
if (a * b >= L) break;
pset.add((int)(a * b));
}
}
int[] res = new int[pset.size()];
idx = 0;
for (Integer i : pset) res[idx++] = i;
Arrays.sort(res);
return res;
}
private static int countNumber(int[] semiprimes, int n) {
int l = 0;
int r = semiprimes.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (semiprimes[mid] <= n) {
l = mid + 1;
} else {
r = mid - 1;
}
}
return l;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int[] semiprimes = getSemiPrimes();
while (in.hasNextInt()) {
int n = in.nextInt();
if (n == 0) break;
System.out.printf("%d %d\n", n, countNumber(semiprimes, n));
}
}
}