Cow Exhibition (POJ 2148)
This problem is a little hard. To solve this problem we have let DP[i][s] denotes the greatest possible TF with first i cows and TS=s. We first ignore all TS<0 but reserve TF<0 in the values of DP[i][s]. The iteration formular will be:
DP[i+1][s]=max{DP[i][s−Si]+Fi}
Where Si and Fi are respectively the smartness and funness of the ith cow. After optimize space cost and iteration order, we have:
import java.io.*;
import java.util.*;
class Cow implements Comparable<Cow>{
int s;
int f;
public Cow(int s, int f) {
this.s = s;
this.f = f;
}
public int compareTo(Cow that) {
Cow a = this;
Cow b = that;
if (a.s < b.s) return 1;
else if (a.s > b.s) return -1;
else if (a.f < b.f) return 1;
else if (a.f > b.f) return -1;
else return 0;
}
}
public class CowExhibition {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int N = in.nextInt();
Cow[] cows = new Cow[N];
for (int i = 0; i < N; i++) {
cows[i] = new Cow(in.nextInt(), in.nextInt());
}
Arrays.sort(cows);
long[] dp = new long[102000];
Arrays.fill(dp, -102000);
dp[0] = 0;
int maxs = 0;
for (int i = 0; i < N; i++) {
Cow c = cows[i];
if (c.s >= 0) {
for (int j = maxs + c.s; j >= c.s; j--) {
dp[j] = Math.max(dp[j], dp[j - c.s] + c.f);
}
} else {
for (int j = 0; j <= maxs + c.s; j++) {
dp[j] = Math.max(dp[j], dp[j - c.s] + c.f);
}
}
maxs = Math.max(maxs, maxs + c.s);
}
long max = 0;
for (int i = 0; i <= maxs; i++) {
if (dp[i] >= 0) max = Math.max(max, i + dp[i]);
}
System.out.println(max);
}
}