# Bridging Signals (POJ 1631)

The problem is just a equivalent of finding the length longest increasing subsequence from given subsequences as if we only preserve the connection to endpoint numbered by items in that subseqence, there won't be a cross among every pairs of connections. Also we can not find a larger solution to this problem.

import java.io.*;
import java.util.*;

public class BridgingSingals {
static private int[] array = new int;
static private int[] dp = new int;
static private int[] count = new int;

private static int upperbound(int[] array, int value, int len) {
int l = 0, r = len - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (array[mid] <= value) {
l = mid + 1;
} else {
r = mid - 1;
}
}
return r;
}
private static void solve(int p) {
for (int i = 0; i <= p; i++) {
count[i] = 50000;
}
count = Integer.MIN_VALUE;
int max = 1;
for (int i = 0; i < p; i++) {
int c = upperbound(count, array[i], p);
dp[i] = Math.max(1, c + 1);
count[dp[i]] = Math.min(count[dp[i]], array[i]);
max = Math.max(max, dp[i]);
}
System.out.println(max);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int p = in.nextInt();
for (int i = 0; i < p; i++) {
array[i] = in.nextInt();
}
solve(p);
}
}
}